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J. Phys. A: Math. Gen. 13 (1980) 1297-1310. Printed in Great Britain 

Adiabatic regularisation for scalar fields with arbitrary 
coupling to the scalar curvature 

T S Bunch? 
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 5321 1, USA 

Received 1 August 1979, in final form 17 October 1979 

Abstract. Adiabatic regularisation is applied to a scalar field propagating in a Robertson- 
Walker universe with arbitrary coupling to the scalar curvature. Explicit expressions for the 
expectation value of the quantum stress tensor in an adiabatic vacuum are obtained. This 
calculation yields the terms which are to be subtracted from the divergent mode-sum 
expressions for expectation values of the stress tensor to give a finite, renormalised stress 
tensor. It is shown that the removal of the infinite terms in this subtraction procedure 
corresponds to the renormalisation of coupling constants in Einstein’s equation. A short 
description is given of the way in which adiabatic regularisation produces a trace anomaly. 

1. Introduction 

The recent study of the stress tensor, T,”, of quantum fields in curved space-time has led 
to the introduction of a number of different regularisation schemes designed to make 
finite the formally divergent matrix elements, (T,,), of the stress tensor. However, the 
use of a method of regularisation is only one stage in the process of defining a 
renormalised stress tensor. First, one must define physically acceptable quantum states 
so that the stress tensor operator can be studied via its matrix elements. Of particular 
interest are the expectation values of TcLy in states which represent the distribution of 
quantum matter throughout the space-time since these quantities appear as the source 
of the gravitational field in Einstein’s equation. It is usual to consider only vacuum 
expectation values, (01 T,,10), since these have a simple expression as a formally 
divergent sum or integral over products of modes and their derivatives. Once a vacuum 
expectation value has been renormalised by the subtraction of a formally infinite 
quantity, the renormalised operator T,,, is immediately given by the subtraction of the 
same infinite quantity. Secondly, in order to carry out this subtraction, the divergent 
mode sum must be regularised, preferably by introducing some covariant cutoff. 
Thirdly, the regularised mode sum is decomposed into two parts: an unphysical, 
divergent part which is to be discarded, and the finite physical remainder, the renor- 
malised vacuum expectation value. Fourthly, some justification for discarding the 
divergent part should be given. In practice this is usually done by renormalising 
coupling constants in a generalised form of Einstein’s equation which includes 
geometric tensors which are fourth order in derivatives of the metric. 
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The third stage in the renormalisation process is usually carried out in practice by 
one of two methods, by adiabatic regularisation (Parker and Fulling 1974) or by using 
the DeWitt-Schwinger formalism (Schwinger 195 1, DeWitt 1975). Both of these 
methods calculate only the divergent part of (TLIy)  which is to be removed in the 
renormalisation process. They do not give any detailed information about the finite 
remainder, which is obtained from the mode sum after the divergences have been 
identified and discarded. The DeWitt-Schwinger formalism has the advantage of being 
completely general: the divergences in (Thy)  are known for an arbitrary background 
metric. Moreover, it is known that if dimensional regularisation is used, these diver- 
gences can be removed by renormalising coupling constants in Einstein’s equation 
(Bunch 1979). However, the evaluation of the renormalised expectation values of TLIy 
is rather complicated, although some explicit calculations have been performed using 
covariant point-splitting regularisation (Bunch and Davies 1978a, b). This method of 
regularisation does not lead to the renormalisation of coupling constants in Einstein’s 
equation so that the problem of determining the correct renormalisation procedure is 
less simple than with dimensional regularisation: this matter is discussed in detail in 
Bunch et a1 (1978). In contrast, adiabatic regularisation has the advantage of being easy 
to apply to concrete calculations since it enables renormalised expectation values of TLIy 
to be calculated as finite mode sums (Bunch 1978), although in practice a simple cutoff 
procedure is sometimes required to evaluate the finite integrals (Birrell 1978). The 
main disadvantage of adiabatic regularisation is its lack of generality: it has only been 
developed for scalar fields with particular couplings to the scalar curvature in Robert- 
son-Walker and Kasner space-times (Parker and Fulling 1974, Fulling et a1 1974). 
Moreover, an early attempt to show that the divergences in ( TFy) which are removed by 
adiabatic regularisation can renormalise coupling constants in Einstein’s equation was 
only partially successful (Fulling and Parker 1974). 

In § 2 of this paper a generalisation of adiabatic regularisation will be given in which 
it is applied to a scalar field propagating in a Robertson-Walker universe with arbitrary 
coupling to the scalar curvature. The generalisation to arbitrary coupling is important 
when a self-coupling is included (Ad4 field theory) because the constant which measures 
the strength of this coupling undergoes renormalisation in such a theory. An example 
of the use of adiabatic regularisation in A44 field theory appears in Bunch et a1 (1980). 
Section 3 of this paper is devoted to showing that the explicitly divergent terms in ( TFY) 
can lead to the renormalisation of coupling constants in Einstein’s equation provided 
that a suitable cutoff (method of regularisation) is used. Finally, in 0 4 a short discussion 
is given of the appearance of an anomalous trace in the renormalised stress tensor. 

2. Adiabatic regularisation of the stress tensor 

The Robertson-Walker metric will be taken in the form: 

ds2 = C(v)[dv2 - hij dx’ dx’] 

hi, dx’ dx’ = (1 - 
(i = 1 , 2 , 3 )  

dr2 + r2(d02 + sin2 8 dq5’) 

where E = -1, 0 or +1 for spatially open, flat or closed universes. The scalar wave 
equation is 

Od+(m2+(R)q5=0. (2.3) 
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Put 
4 = c - l / 2 x  

and decompose 

d G ( k ) [ A k Y k ( X ) X k ( 7 ) ) + A t  k yx ( 4 X t  (7711 
where 

A(3) Yk (x) E h-’”d, [ h 1’2h Yk (x)] = -( k 2  - E )  Yk (x) 

k = 1 , 2 , 3 , .  . . 
O<k<m if E = O  or -1 

h = det(hij) 

if e = l  

and 

/I d3k 

I,m,n I,J,M 

if E = O  

i f e = l  

(2.4) 

(2.5) 

(2.6) 
(2.7a) 

(2.76) 

(2.8) 

(2.9) 

if E = -1, 11 dk 2 
The properties of the functions Yk(x)  are discussed in appendix A of Parker and Fulling 
(1974). The functions x k ( 7 ) )  in (2.5) satisfy: 

x [  + n ’ , x k  = 0 (2.10) 

RE=w: +(t-,$)CR (2.11) 

w :  = k2 f Cm2 (2.12) 

where 

and the primes in (2.10) denote differentiation with respect to 77. The functions X k  are 
normalised according to 

(2.13) 

which ensures that the canonical commutation relations for the field operator 4 and its 
conjugate momentum lead to the following commutation relations for the operators Ak 
and A:: 

* I - ’  
x z ‘ x k  - X k X k  - 1  

(2.14) 

(2.15) 

An adiabatic vacuum IO), is now defined by choosing X k  to be a positive-frequency 
WKB solution of (2.11) and by taking IO), to be a state annihilated by all the operators 
An. This means that X k  is taken to be 
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where the equation satisfied by w k  is obtained by substituting (2.16) in (2.10) which 

(2.17) 

The WKB solution is obtained by solving (2.17) iteratively, taking the zeroth-order 
WKB solution to be 

wio’ = n k .  (2.18) 

The first iterated WKB solution is 

(2.19) 

It is not difficult to see that higher-order WKB solutions contain terms involving 
increasingly many derivatives with respect to q. To obtain all the divergences in (T,,), it 
is sufficient to calculate w k  to an order which includes all terms involving no more than 
four derivatives with respect to 7. Such terms are referred to as terms of adiabatic order 
TP4. This is discussed in considerable detail in Parker and Fulling (1974). The reason 
why the WKB solution to order T-4 yields the divergences in (TPv)  is that the WKB 
solution is an asymptotic solution in large wk, or equivalently in large k .  Thus 
higher-order terms fall off sufficiently rapidly as k + 43 to give a finite contribution to 
(T,”). Since the WKB approximation is valid for large k ,  an adiabatic vacuum has the 
physical interpretation of representing a distribution of quantum matter which, to a 
given order in k, is vacuous in the high-frequency modes. 

Having determined W f )  to order T-4  from (2.19), a second iteration yields Wi2’ to 
order T - 4 .  Further iterations only yield terms of higher adiabatic order so one obtains 
the following result (which could also have been obtained by taking Wp’ = W k  in place 
of (2.18)): 

Cm 5C2m4D2 W=w+- (5-’)(6D‘+3D2+12~)-7(D’+D2)+ 
4w 8w 32w5 

Cm 
320 

+ 7 (0”’ + 4D”D + 3 0  r 2  + 6D’D2 + D4)  

c 2 m 4  -~ (28D”D + 19Dl2 + 122D‘2 +47D4) 
128w 

1105C4m8D4 
( D ’ D 2 + D 4 ) -  

221c3m6 + 
256w9 2048w l1 

Cm 
32w 

+(e -2) 7 (30D”D + 18D’2 + 57D’D2 + 9D4 + 3 6 0 ’ ~  + 36D2e)  

1 2  

-- (‘-si (36Df2 i- 36D‘D2 + 9 D 4  + 144Dk +72D2€ + 1 4 4 ~ ~ )  (2.20) 
320 
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where D = C ' / C ,  the subscript k has been omitted from W and w ,  and the Ricci scalar 
has been taken to be 

R = C ' ( 3 D ' + $ D 2 + 6 e ) .  (2.21) 

Notice that this indicates that E is of adiabaticorder T-2. Consider now the stress tensor 
which for arbitrary 5 has the classical form: 

(2.22) 

T o o = t ( a o 4 ) 2 + ( ~ - 2 5 ) h " a i ~ a j ~  +3tD4ao4 -2&$A'3 '~  + $ 5 ( D 2 + 4 ~ ) 4 2 + & m 2 4 2 .  
(2.23) 

It was argued by Fulling et a1 (1974) that for a state representing a distribution of matter 
having the usual Robertson-Walker symmetries, (Too) can be replaced by 

(Too) = (I d3x dh) -'( d3x J h  Too). (2.24) 

When E = 0 or -1 ,  the right-hand side of (2.24) is to be interpreted as the limit of a ratio 
of quantities integrated over a large finite region of space-time. Applying this relation 
to the second term in (2.23) leads to 

[ d3x J h  hi'ai4aj4 

(2.25) 

where V i  is the covariant derivative on the three-space with metric hip The first term can 
be converted to a surface term which gives no contribution to (Too) since it is assumed 
that expectation values of field operators fall off rapidly at large spatial distances. 
Hence: 

(TOO) = -t(4A'3'4) + 35D(4a04)+ 35(aD2+ E ) ( ~ ! J ~ )  +$Cm2(d2) .  (2.26) 

Now use (2.4)-(2.6) and the following relation from Fulling et al (1974, equation 
(5.21)):  

where 

(2.27) 

Iom k2 dk i f E = O o r - l  
(2.28) 

f k 2  
k = l  

if E = 1. 
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This yields: 

where an operator symmetrisation of the term (4d04) has been performed. Expres- 
sions for l $ k 1 2 ,  \$LIZ and (Lk$t’ + $t$L calculated to order T4 are given in appendix 1. 
Using these, A(OlTOOIO)A can be calculated and the following result obtained: 

7 c 3 m 6  105C4m8D4 
64w 1024w” 

+ y ( D ’ D 2 + D 4 ) -  

3Cm’D’ Cm’ 
+y (6D”D - 3DI2 + 6 0 ’ 0 ’ )  

w 2w3 8w 

-- c 2 m 4  105C‘4y96D4) (120D’D2+ 1 0 5 D 4 + 6 0 D 2 ~ ) +  
64w 

+(t-;)’( -= 1 (72D”D - 3 6 D ” - 2 7 D 4 - 7 2 D 2 ~  + 144~’)  

C m  
+7(54D’Dz+27D4+108D2~))]. 8w (2.30) 

The other independent component of (TFV) ,  namely (Til), can be obtained most 
simply from (2.30) and the trace of (TFY). No renormalisation subtractions have yet 
been made, so this procedure is not in conflict with the eventual appearance of a trace 
anomaly in the renormalised stress tensor. Making use of the wave equation (2.3), the 
trace of the stress tensor operator may be written: 

TZ = ( 6 f - 1 ) d a + d , ~  +f( l -6~)R+’+2(1-3t)m24’.  (2.31) 

The component Tll is related to the trace and Too by 

(2.32) 

(2.33) 

Using (2.24), (2.25), (2.4)-(2.6) amd (2.27) the following expression for ( T z )  is soon 
obtained: 
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Evaluating this using the expressions in appendix 1 leads to 

-- C2m4 (D“’ + 4D”D + 3 0 ”  + 6 0 ‘ 0 ’  + D 4 )  
32w7 

c 3 m 6  231C4ms 
128w 2560 

1155C5m”D4 
2048w l 3  

+- 9 (28D”D +21D”+ 126D’D2+49D4)- 11 (D’D2+D4) 

+ 

9C2m4D2 cm2 (’DI!l+6D!/D +gDl2+3DlD2) 
4w5 +4w5 + 

c 2 m 4  -- (120D”D + 90D” + 390D’D2 + 105D4 + 6 0 0 ’ ~  + 6 0 0 ’ ~ )  
32w 

+- c 3 m 6  (16800’D2+ 1365D4+420D2~)- 9 4 C‘’r1:D ‘) 
128w 

+(s-i)’( --& (18D”’-27D’D2 - 3 6 0 ‘ ~ )  

Cm 
32w 
+y (432D”D + 324DI2 +648D’D2 

+27D4 + 8640’6 + 2 1 6 0 ’ ~  +432~’) 

-7 16w (270D’D2+ 135D4+540D2~))] .  (2.35) 

An expression for A(OJT1IIO)A as an integral over k can be obtained from (2.30) and 
(2.35) using (2.32). 

So far, nothing has been said about regularisation. In spite of its name, adiabatic 
regularisation is not a method of regularising divergent integrals. Thus the expressions 
(2.30) and (2.35), which are the main results of this paper, consist of formally divergent 
integrals and, in principle, some covariant cutoff should be introduced to make sense of 
them. Once this has been done, it is possible to discuss carefully how to define 
renormalised matrix elements of TFY. There are two covariant methods that may be 
used to regularise A ( O /  T,,/O), : covariant point-splitting and dimensional 
regularisation. When covariant point-splitting is used, A(OI TF,/O)A is obtained as a 
function of two points, x and x ’ .  It can also be expressed as a function of x ,  E and t” 
where X I  is situated an affine parameter distance E along the geodesic which has unit 
tangent vector t’* at x. A discussion of how to define the renormalised stress tensor from 
the expression for A ( O I T W V I O ) ~  as a function of x, E and t’l was given in Bunch et a1 
(1978). The procedure proposed there is to discard all terms which depend explicitly on 
the regularisation parameters E and t’* and, in addition, to discard any local geometrical 
quantities whose presence would otherwise prevent the renormalised matrix element 
from being conserved. This determines the renormalised expectation value up to 
multiples of conserved geometric tensors of adiabatic order up to T-4.  There are four 

c 2 m 4  
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such tensors: the metric g,,, Einstein's tensor G,,, and thedensors ( l )H,y and ("H,, 
which are obtained by varying 5 R2Jgd4x  and 5 R,,R@Jgd4x with respect to the 
metric, where g is the determinant of the metric. The coefficients of these tensors are 
presumably to be determined by experiment, as in any renormalised field theory. This 
renormalisation procedure was shown in Bunch et a1 (1978) to yield a renormalised 
stress tensor satisfying the first four of the axioms of Wald (1977). In addition, it was 
shown that for a massive scalar field, the procedure is equivalent to discarding all the 
terms appearing in A(OIT,,lO)A which are of adiabatic order up to TP4, whether they 
depend on the regularisation parameters or not. This last point is important because it 
means that one can calculate renormalised expectation values of Twy by writing down a 
formal mode-sum expression for the expectation value and subtracting from this the 
quantity A(OlT,,/O)A which is given by (2.30) and (2.35). This subtraction can be 
performed mode by mode leaving finite integrals which can be evaluated without having 
to introduce a covariant cutoff. Thus, although one needs to use covariant regularisa- 
tion to justify the renormalisation procedure being used, one can perform practical 
calculations without it. Indeed, it is even possible to perform these mode by mode 
subtractions for massless scalar fields provided that one starts out with non-zero mass 
and only takes the limit m + 0 after the renormalised ( T,,) has been obtained (see, for 
example, Bunch 1978). 

To summarise the conclusions of this section: expectation values of T,, are 
calculated from formally divergent mode sums. An adiabatic vacuum state, can be 
defined using a WKB approximation which characterises the high-frequency behaviour 
of the quantum field. Thus the divergences in the original mode sum, which come from 
the high-frequency modes, are the same as the divergences in A(OITPVIO)A. A careful 
analysis of the structure of A(OI T,,IO)A carried out using covariant point-splitting to 
regularise the formally divergent integrals shows that the original mode sum can be 
renormalised by subtracting from it the quantity A(O/ T,,/O)A calculated to adiabatic 
order T-4. This subtraction can be applied to the integrand of the original mode sum, 
leaving finite integrals. The resulting expression is conserved and determines the 
renormalised expectation value up to multiples of the conserved geometrical tensors 
g,,, G,,, ("H,, and '''H,,. 

3. Renormalisation of coupling constants in Einstein's equation 

Covariant point-splitting is not a suitable method of regularisation to use when 
ciiscussing whether the removal of divergences from (T,,) can be carried out by 
renormalising coupling constants in Einstein's equation. This is partly because ( TFV) 
depends on the vector P, but even if this dependence were removed (say, by averaging 
over all directions), coupling constant renormalisation would still not be possible since 
covariant regularisation methods which operate in four dimensions cannot give a trace 
anomaly and at the same time renormalise coupling constants (Bunch 1979). Thus one 
must use dimensional regularisation. To perform a proper dimensional regularisation 
would involve carrying out the calculations of 9 2 entirely in n dimensions. To avoid 
such a complicated calculation, a simple non-couariant 'dimensional regularisation' will 
be used instead. This regularisation consists of replacing k 2  by k n - 2  in (2.28). Because 
this procedure is not covariant, it is not possible to show that renormalising coupling 
constants in Einstein's equation removes all terms of adiabatic order up to T-4. 
Instead, it will be shown that the explicitly divergent terms are removed in this way. 
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Consider first the terms of adiabatic order zero: 

Performing the integrations and retaining only the pole at n = 4: 

c m  
32.rr2(n -4) 

( Too)'o' = 

 pm (Tll)(o) = - 
32.rr2(n -4) 

which implies 

(3.3) 

(3.4) 

Thus this quantity can be removed by renormalising the cosmological constant. 
Now consider the explicitly divergent terms of adiabatic order T - 2 :  

" k"-2 dk 3(5-i)m2D2 
(D2-4.5)I ~- (3 .6)  

( T  )(') - -- 3(5-4) 
16.rr2C 0 @ k  1 6 r 2  

- I (D2+4.5)= - 

00 div - 

Goo (3.7) 
3 (5  - b)m ( t - i )m2 

32r2(n -4)  8.rr2(n - 4) 

+ ( T  ) ( 2 )  -- ( 5 - 4 ) p ( ( 1 2 D ' - 3 D 2 + 1 2 ~ )  lom dk+ Cm2(12D'+ 12.5) lo OC 7) k"-2 dk 
48.rr2C @ k  

11 d i v -  

(3.8) 

Gii .  (3.9) 
iT- m2(5-i)  p(6D'+$D2+6.5) = - ( t - i )m2 

4 8 ~ ' ( n  -4) 8.rr2(n - 4)  

Thus 

(3.10) 

This can be removed by renormalising the gravitational constant. 
It is not necessary to use any regularisation to investigate the divergent terms of 

adiabatic order T-4 since the coefficients of these terms are already the components of 
the conserved tensor (')EIP,,: 

(5-22 (72D"D-36D'2-27D4-72D2~ +144c2) jom 9 (Too)% = - (3.11) 1 2 8 ~  C 

(TII)&!~= :i82& p(48Df"-24D"D + 12D'2-72D'D2+9D4 

[" k 2 d k  
- 9 6 0 ' ~  +24D2e - 4 8 ~ ~ )  - ? .  

Jo wlk 
(3.12) 
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These lead to 

(3.13) 

This completes the demonstration that the explicitly infinite terms in ( TFv) can be 
removed by renormalising coupling constants in Einstein’s equation. The discussion 
given at the end of § 2 indicates that the explicitly finite terms in (2.30) and (2.35) must 
also be subtracted from (TFv) in the renormalisation process. These terms are not 
covariant, reflecting the non-covariance of adiabatic regularisation. However, as 
discussed earlier, if adiabatic regularisation were developed entirely in n dimensions, 
this covariant regularisation would give a completely covariant result. 

The finite terms in the adiabatic stress tensor can be explicitly evaluated for E = 0 or 
-1 by performing the integrations. The result is 

( T )  . =-- m2D2 1 (:D”D - $DI2 - iD4)  
3 8 4 ~ ’  288O.rr’C 00 finite 

(3.14) 

- (16D“‘- 8D“D +4D”-24D’D2+ 3D4- 1 6 D ’ ~  +4D2.5) 
768.rr2C 

- (s-’)’ (72D”D +54D”+54D’D2-~D4+ 1 4 4 0 ‘ ~  
192.rr’C 

(3.15) 

When 5 = 0 or and E = 0, the terms of adiabatic order T-4 agree with those 
obtained by Birrell (1978). To check this requires realising that Birrell’s logarithmic 
divergence is essentially 

(3.16) 

(3.17) 

Thus expressions (3.14) and (3.15) above contain not only Birrell’s finite term but also a 
finite contribution from his logarithmic divergence. 
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4. The trace anomaly 

The trace of the classical stress tensor (2.22) is 

Using the wave equation this may be expressed in a form that is manifestly traceless 
when 5 = 2 and m = 0: 

TZ = (65- l ) d a 4 d , 4  +(65- 1)404 +m2q!2. (4.2) 

It is well known that, although this trace is formally zero for a massless conformally 
coupled scalar field, its renormalised expectation values are not necessarily zero. This 
arises because renormalisation of the trace by adiabatic regularisation requires the 
subtraction of the massless limit of m2A(0142(o)A which is non-zero since A ( 0 1 4 ~ 1 o ) A  

contains finite terms of adiabatic order T-4 which are proportional to K2. 
This mechanism gives rise to a trace anomaly even when (#; since an unexpected 
contribution to the renormalised trace of the massless theory is produced in the manner 
just described. 

Thus the trace anomaly provided by adiabatic regularisation is 

4 

1 2  

- ('-:I ( 3 6 D f 2 + 3 6 0 ' D 2 + 9 D 4 +  1 4 4 0 ' ~  + 7 2 0 2 ~ + 1 4 4 ~ 2 )  (4.5) 1 2 8 ~  C 

(5 - ;y R [OR -(RaPR,, 1 - -- 
2 8 8 0 ~ ~  327' (4.6) 

This expression for the trace anomaly is of the general form derived using dimen- 
sional regularisation by Deser eta1 (1976) and is equal to -a2(x)/16.rr2 where u2(x) is a 
coefficient which arises in the DeWitt-Schwinger formalism. It is important to realise 
that, except when 5 = i ,  when everything that appears in the renormalised trace is 
anomalous, there is some ambiguity about precisely how much of the non-zero trace 
should be regarded as anomalous. (There is, of course, no ambiguity about the entire 
renormalised trace.) This ambiguity arises because the functional form of the stress 
tensor can be altered by using the wave equation. Different contributions to the 
anomalous part of the trace are obtained by using each of the three expressions (2.31), 
(4.1) and (4.2) because the coefficient of m2q5' is different in each case. This ambiguity 
only alters the trace anomaly by a multiplicative constant: it always remains propor- 
tional to a2(x). 

On the other hand, there is no ambiguity in the following anomalous behaviour 
which is valid for all 5. There exists a bilinear operator which is formally zero for a 
massless field but which has non-zero renormalised matrix elements, namely 
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The renormalisation of expectation values of fl requires the subtraction of a term which 
is the massless limit of 

A ( o I f l / o ) A  E -m2A(o/42/O)A. (4.8) 

Thus the renormalised expectation value of (4.12), in any quantum state, is 

- -- 
1 6 ~ ”  

(4.9) 

(4.10) 
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Appendix 1. Quantities used in evaluation of the stress tensor 

l*k12 = (2 Wk1-l (A l . l )  

w,’ z-+- 1 Cm2 5 ( D ’ + D 2 ) -  5C2m4D2 -- (‘-!) (6D’ + 3 D 2 +  126) 
w 8w 32w7 4w 

Cm -- (D”’+4D”D +3D”+6D’D2+D4)  
32w 

(28D”D +21D’2+ 126D’D2+49D4) +- c 2 m 4  
128w 

23 1 C3m6 1155 C4m ‘D4 
2048w l3 

- 11 (DO2 + D4) + 
256w 

Cm 
32w 

c 2 m 4  

-(t-i) 7 (30D”D +3ODf2+75D’D2+ 1 5 D 4 + 6 0 D ’ ~  +60D26) 

(210D’D2+ 105D4+420D2~)  + ( 5 - i )  
1 2  

+- (108D” + 108D’D2 + 27D4+432D’6 +216O2c +432c2) 
32w 

(Al.2) 

*&bp + (cl:*; = -wiz w; 
Cm2D Cm2 5 c 2 m 4  

iT -- 3 + 5 . ( D ” + 3 D ’ D + D 3 ) - ~ ( D ’ D + D 3 )  
2w 8w 8w 
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-- + 

Cm ’ +(( - i )  7 ( 1 8 0 ‘ 0  + 9D3 + 3606) 
8 W  

Cm ’ 7C2m4D2 +- ( 6 - i )  (6Df+3D2+ 1 2 € )  - w - - - j ( ~ ’ + ~ 2 ) +  
8 0  32w5 4w 

Cm ’ 
320 

c 2 m 4  
128w’ 

+ 7 (D” ’ + 4D”D + 3 D‘ ’ + 6D’ D 2  + D 4 )  

(32D”D+ 19D’2+134D’D2+51D4) -- 

259C3m6 1365 C4m8D4 + 
256w9 

8 w 3  
-- ( 3 0 ”  1 + 30!lD + 3Df2) (6 

(A1.3)  

(420“D + 18DI2 +69D’D2 +9D4 + 3 6 0 ’ ~  + 36D2e) 
Cm ’ g 

(2D’D2+ D4 + 4O2e) 
105C2m4 

-(64 128w7 

1 2  

- -- (‘-’! (36D”+ 36D’D2+ 9D4 + 1 4 4 0 ’ ~  +72D’~ + 144~’). (A1.4) 
32w 

Appendix 2. Some geometrical tensors in Robertson-Walker universes 

The metric is given by (2.1) and (2.2). There are only two independent components of 
each two-index tensor in a Robertson-Walker universe, since off -diagonal elements 
vanish and the space-space diagonal components are proportional to each other. The 
Ricci tensor and Ricci scalar are 

R 00 -1  - zD’ 

R = C-’(3D’+$D2+6~).  

RI1 = -+p(D’+D2+4e) (A2.1) 

(A2.2) 

Quantities of adiabatic order T-4 are, in addition to R2,  

R = C-’(3D”’-~D‘D2-6D’~)  (A2.3) 

R“’R,, = C-’(3D’’+$D’D2+fD4+6D’~ +6D2e t 1 2 ~ ’ )  (A2.4) 

(’)H 00- - C - 1 ( - 9 D ” D + ~ D 1 2 + ~ D 4 + 9 D 2 ~  - 1 8 ~ ~ )  (A2.5) 

(‘)H 11  - - C-’p(6D”’-3D”D+~D’2-9D‘D2+~D4-12D’~+3D2~ - 6 ~ ~ ) .  (A2.6)  
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